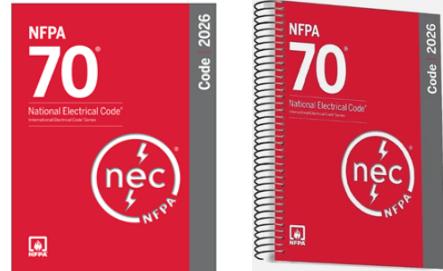


Two-Day Tutorial: NEC® 2026 Code Changes for Engineers


Understanding the New Requirements, Their Intent, and Their Impact on Electrical Design

The National Electrical Code® (NEC) continues to evolve to address emerging technologies, safety research, and industry best practices. With the 2026 edition introducing new structure, reorganized requirements, and significant technical updates, design engineers must understand how these changes affect both current and future projects.

This two-day, engineer-focused tutorial delivers a comprehensive review of the 2026 NEC changes—organized the same way the code is structured. Attendees will explore not only *what* changed, but *why* it changed, how to apply the updates in real-world designs, and how these revisions may influence forthcoming designs, specifications, and installations as jurisdictions adopt the new edition.

Attendees are advised to bring a laptop, an engineering calculator, and a copy of the 2026 NEC, either electronic or paper. During the conference, an electronic copy (2-week free trial) of NEC 2026 (NFPA70) can be ordered online at <https://www.nfpa.org/for-professionals/codes-and-standards/nfpa-link#pricing-options>. A paper copy of NEC 2026 can be ordered at time of registration for a discounted rate of \$152.00 (Softbound) or \$162.00 (Spiralbound).

Note: Order must be placed by May 15 to be available in time for the conference tutorial.

Day 1, Chapters 1–4: General Requirements & Foundational Changes

This first day focuses on the core of the NEC—the general requirements applicable to almost every electrical installation.

Key Topics Include:

- **NEC Reorganization for 2026 and Beyond**

Understanding structural changes to the code, future reorganization plans, and how these revisions align with modern system design, renewable integration, and digital infrastructure.

- **Arc-Flash Labeling Requirements (110.16)**

Review of updated labeling rules, new informational elements, coordination challenges, and the relationship with incident-energy calculations and equipment documentation.

- **Working Space and Access Requirements**
Important changes related to clearances, dedicated space, and equipment accessibility—critical for safe operation, maintenance, and compliance.
- **Load Calculation Updates**
Revisions to foundational calculation methods affecting services, feeders, and branch circuits, including new demand factors and technology-driven adjustments.
- **Electric Shock Protection**
Updated shock-protection provisions, evolving definitions, and requirements spanning GFCI, GFPE, and personnel protection throughout general installations.

Day 2, Chapters 5–8: Special Occupancies, Equipment, and Systems

Day two transitions to special requirements and emerging technologies—areas experiencing rapid growth and significant code activity.

Key Topics Include:

- **Interconnected Power Systems**
Requirements for interconnected sources, microgrids, and hybrid systems, with emphasis on coordination, grounding, and safety controls.
- **Healthcare Facilities**
Updates affecting essential electrical systems, patient-care spaces, wiring methods, and reliability expectations for critical healthcare infrastructure.
- **Photovoltaic (PV) and Wind Applications**
Latest changes influencing renewable-energy design, inverter-based systems, rapid shutdown, grounding, and overcurrent protection.
- **Electric Vehicle Charging Equipment**
Updated requirements addressing higher-power charging, bidirectional systems, load management, and infrastructure integration.
- **Electric Shock Protection in Special Applications**
Enhanced requirements for pools, fountains, agricultural buildings, marinas, and other environments with elevated shock hazards.

Why Engineers Should Attend

This seminar bridges the gap between minimum code compliance and sound engineering design. Attendees will gain:

- A clear understanding of how the 2026 NEC changes affect design decisions.
- Insight into the intent behind new provisions to help ensure compliance, safety, and reliability.

- Practical examples and applications relevant to commercial, industrial, healthcare, renewable energy, and EV infrastructure projects.
- Awareness of how jurisdictional adoption of the NEC will impact upcoming design cycles.
- Tools to identify potential design pitfalls before they become costly field issues.

Who Should Attend

- Electrical design engineers
- Consulting engineers
- AHJs and inspectors
- EPC contractors
- Project managers
- Facility engineers
- Anyone responsible for ensuring NEC compliance in electrical system design

Event Format/Deliverables

- Two full days of instructor-led training
- Content aligned with NEC 2026 as proposed and adopted
- Real-world examples and case studies
- Interactive discussion and Q&A throughout
- PDH Certificate for 16-hours of instructor-led training

Instructor

Tom Domitrovich

Mr. Thomas A. Domitrovich is an Electrical Engineer within Eaton Corporation's electrical group with experience in engineering, sales & marketing, business development and product management. Domitrovich is actively involved with various electrical industry organizations and most recently has focused on the continued growth of electrical safety. Mr. Domitrovich is an author with a wide range of trade magazine articles including columns in two industry trade magazines focused on electrical safety. He sits on NFPA Code Making Panel 2 for the continued development of the National Electrical Code (NFPA 70). He is also on the NFPA committee for the continued development of NFPA 73 and chairs various committees for other electrical industry organizations. Mr. Domitrovich is a LEED® Accredited Professional, a licensed Professional Engineer and holds a Bachelor of Electrical Engineering from Gannon University.